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An analytical solution in 2D for the motion of rigid elliptical
particles with a slipping interface under a general deformation
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Abstract

A mathematical model for rigid inclusions with a slipping interface immersed in a general 2D homogeneous deformation is developed. Under
bulk pure shear inclusions are expected to rapidly approach the stretching axis when compared to the behaviour of inclusions with no slip at the
interface. The derived model predicts synthetic and antithetic motion into a stable orientation under simple shear, and thereafter the inclusion
makes an antithetic angle with the shear direction. Under simple shear rotation rates can be higher or lower than those of no-slip inclusions,
depending on orientation. A direct relationship between object inclination to the shear direction and the vorticity of the bulk flow is predicted.
The model compares well with published analogue and numerical experiments.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural rocks deform in very complex ways. Reliable esti-
mates of finite strain and the kinematic vorticity number (Wk)
or flow type are a key part of understanding local and regional
rock deformation (see Xypolias and Koukouvelas, 2001 for an
example study). A plethora of methods exist for finite strain
estimation (see Mulchrone et al., 2003 and references therein),
however, these rely largely on the assumption of passive
behaviour (i.e. elliptical inclusions behave exactly like the en-
closing matrix) and give no information about the kinematics
of deformation. Over the last 20 years or so there has been
a considerable research effort put into understanding porphyr-
oclast systems (Passchier and Simpson, 1986) because they
may be the source of kinematic and mechanical information
(Bose and Marques, 2004). The mathematical model of Jeffery
(1922) for the behaviour of a rigid ellipsoid immersed in
a Newtonian fluid with no slip at the boundary has provided
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the theoretical basis for much of this work and was introduced
to the structural geology literature by Ghosh and Ramberg
(1976). More recently researchers have begun to consider
different models for inclusion behaviour: (i) rigid with no-
slip (Jeffery, 1922; Mushhelishvili, 1953; Mason and Manley,
1957; Bretherton, 1962; Ghosh and Ramberg, 1976; Freeman,
1985; Passchier, 1987; Jezek et al., 1999; Arbaret et al., 2001;
Mandal et al., 2001; Schmid, 2002; Marques and Coelho,
2003), (ii) rigid with slip on the boundary (Ildefonse and
Mancktelow, 1993; Odonne, 1994; Kenkmann and Dresen,
1998; Pennacchioni et al., 2000; Mancktelow et al., 2002;
Schmid and Podladchikov, 2003, 2004; Samanta and
Bhattacharyya, 2003; Ceriani et al., 2003; Bose and Marques,
2004; Marques and Bose, 2004; Marques et al., 2005a), (iii)
rigid with slip and/or no-slip in confined flow (Marques and
Coelho, 2001; Taborda et al., 2004; Marques et al., 2005b),
(iv) non-rigid with no-slip (Eshelby, 1957; Bilby and
Kolbuszewski, 1975; Schmid and Podladchikov, 2003;
Mulchrone and Walsh, 2006). In this paper a 2D analytical
solution is derived for the case of a rigid object immersed in
a Newtonian fluid with slip at the boundary. After a brief
review of related work, the solution is presented.

mailto:k.mulchrone@ucc.ie
http://www.elsevier.com/locate/jsg


951K.F. Mulchrone / Journal of Structural Geology 29 (2007) 950e960
Mantled porphyroclasts have been the subject of analogue
modelling (Passchier and Sokoutis, 1993; Passchier et al.,
1993; ten Brink and Passchier, 1995) and experimental results
support a direct relationship between rheology and developed
mantle structures (i.e. stress sensitivity). Theoretical and nu-
merical studies of deflections around rigid spherical inclusions
have also been conducted (Masuda and Mizuno, 1995,
1996a,b) for both Newtonian and non-Newtonian enclosing
materials which indicated that it was the initial size of the
mantle rather than the stress sensitivity which determined
the type of mantle structure developed. Bons et al. (1997)
showed that the applied boundary conditions (i.e. simple shear
at an infinite versus a finite distance) determine the type of
flow pattern around a rigid inclusion (i.e. eye-shaped or
bow-tie-shaped separatrix, Passchier et al., 1993) and thus
the mantle structure developed. Stress sensitivity was found
to be of secondary importance. Mandal et al. (2001) demon-
strated that a bow-tie separatrix can develop under combined
simple and pure shear. Bose and Marques (2004) presented
the results of analogue models suggesting that slip or no-slip
at inclusion boundaries is an important factor in determining
the morphology of mantle structures, as well as the flow pat-
tern in the matrix, mantle rheology and the mantle position
with respect to the separatrix. In a numerical study, Marques
et al. (2005a) demonstrated the existence of cats eyes-shaped
flow under the influence of a low viscosity layer between
the matrix and inclusion. However, Schmid and Podladchikov
(2005) used a three-phase finite-element model with power-
law rheologies to investigate an isolated mantled porphyro-
clast in simple shear. They were able to produce gauges for
effective mantle/matrix viscosity contrast, production rates
of mantle material as a function of bulk shear strain and the
total shear strain.

Populations of rigid inclusions have been the subject of
theoretical (Fernandez et al., 1983; Fernandez, 1987; Passchier,
1987; Masuda et al., 1995; Marques and Coelho, 2003), exper-
imental (Ildefonse et al., 1992a,b; Arbaret et al., 1996; Herweg
and Handy, 1998) and natural study (Manga, 1998; Pennac-
chioni et al., 2001). In the case of populations of non-
interacting particles (Fernandez et al., 1983; Fernandez,
1987; Masuda et al., 1995; Marques and Coelho, 2003) with
no-slip at the boundary (Jeffery, 1922), pulsating fabrics have
been predicted under simple shear although the period of a
fabric cycle increases with inclusion aspect ratio. Interaction
of particles (Ildefonse et al., 1992a,b; Arbaret et al., 1996) af-
fects the behaviour of populations as revealed in analogue
experiments. The development of pulsating fabrics is inhibited
and the fabric remains at a small angle to the shear plane.
Samanta et al. (2003) demonstrated theoretically and experi-
mentally that for interacting spherical particles rotation rates
are retarded.

In the vast majority of research no-slip boundary conditions
are assumed, however, theoretical and experimental studies
suggest that slip on the boundary between the inclusion and
the matrix could significantly influence the behaviour of
inclusions (Ildefonse and Mancktelow, 1993; Odonne, 1994;
Kenkmann and Dresen, 1998; Pennacchioni et al., 2000;
Mancktelow et al., 2002; Schmid and Podladchikov, 2003,
2004; Samanta and Bhattacharyya, 2003; Ceriani et al.,
2003; Marques and Bose, 2004; Marques et al., 2005a,b).
Ildefonse and Mancktelow (1993) observed increased inclu-
sion rotation rates under simple shear but reduced rates under
pure shear. Additionally, under simple shear they reported that
inclusions rotated towards the shear plane and remained there.
Due to modification of the soap layer used to facilitate slip,
this conclusion is only valid for low finite strains. Further-
more, they found that because the inclusion does not rotate
through the shear plane d-type mantle structures will not
develop. Odonne (1994) carried out analogue modelling of
a deformable inclusion and found that with a high degree of
bonding the inclusion deforms whereas as the level of bonding
decreases the inclusion effectively behaves in a rigid manner.
Marques and Coelho (2001) experimentally investigated the
effect of simple shear applied at a finite distance on the behav-
iour of an isolated rigid inclusion and found that it departs
quite significantly from that under simple shear applied at
infinity and when the interface coupling is reduced antithetic
rotation is possible. Mancktelow et al. (2002) performed ring
shear experiments to investigate the effect of boundary slip
or no-slip on differently shaped inclusions. Elliptical shapes
with slip showed reduced rotation rates when the long axis
is close to the shear plane, however, rhomboidal shapes with
slip attained stable orientations with their long sides subparal-
lel to the shear plane and back rotation (opposite to the bulk
sense of shear) was also observed. In the case of no-slip, inclu-
sions essentially behaved as predicted by the theory of Jeffery
(1922). Ceriani et al. (2003) also describe antithetic rotation
for elliptical inclusions and metastable positions for a lubri-
cated interface. Metastable positions may be due to changing
thickness of the layer of lubrication during deformation. In
general, the presence of a lubricating mantle zone produces
faster rotation rates than that predicted by the no-slip theory.
Schmid and Podladchikov (2003) developed analytical solu-
tions for the case of a deformable circular inclusion with
a weak rim and have shown it may effectively be considered
as a weak inclusion. Samanta and Bhattacharyya (2003) con-
sidered modes of detachment at a rigid-inclusionematrix in-
terface by calculating the stresses acting on the interface
using Jeffery’s (1922) theory (i.e. no-slip). They then studied
the occurrence of detachments by initiating detachment once
selected tensile and shear strengths had been exceeded. How-
ever, they did not investigate the influence of such detach-
ments on the dynamics of clast behaviour. Bose and
Marques (2004) and Marques and Bose (2004) reported on
the results of precision experiments dealing with rigid inclu-
sions composed of ice with slip on the boundary. There were
clear differences between the behaviour of inclusions with
slip and theoretical and experimental results for the no-slip
case. In addition, they found antithetic rotation into a stable
orientation which depends on aspect ratio and shape and
also the occurrence of a metastable orientation separating
the synthetic and antithetic rotational fields. A numerical study
by Marques et al. (2005a), in which a low viscosity layer was
placed between the matrix and inclusion, found close
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agreement with analogue experiments. Schmid and Podladchi-
kov (2004) made the equivalent void conjecture to explain the
common observation of stable and metastable clast inclina-
tions in shear zones. This approach assumes that the mantle
material around a rigid clast is significantly weaker than the
surrounding matrix, which effectively isolates the rigid clast
from the matrix. Furthermore, it is asserted that the combined
rigid inclusion/weak mantle package behaves as an area pre-
serving void whose shape changes little due to the presence
of the rigid inclusion.

It is clear that structures developed in and around rigid ob-
jects immersed in a viscous fluid have greatly aided our ability
to understand deformation (Passchier and Trouw, 1996, pp.
116e121). However, as indicated above, recent analogue mod-
elling and natural studies on porphyroclasts have cast doubt on
the ubiquitous applicability of rigid no-slip models to explain
clast behaviour (for example Ceriani et al., 2003; Pennac-
chioni et al., 2001; Bose and Marques, 2004; Marques and
Bose, 2004; Marques et al., 2005a). Pennacchioni et al.
(2001) and Schmid and Podladchikov (2004) pointed out
that there are no models in existence which can explain the
natural data that they have collected. It is also noticeable
that most of the analogue studies make comparisons with
Jeffery’s (1922) theory, which does not even consider slipping
on the interface.

With these factors as motivation, a solution is derived for
slipping rigid objects immersed in a general homogeneous
deformation. The resulting model should be of use in
understanding natural porphyroclast systems and provide a
theoretical framework better matched to experimental results.
To the best of our knowledge, this solution has not been
derived previously (although Schmid and Podladchikov,
2003 do consider the effect of weak rim on a circular inclusion
and Samanta and Bhattacharyya, 2003 consider interface
detachments) and is of direct relevance to the understanding
of rock deformation. The solution is explored in some detail
below and a full derivation is given in the Appendix. Finally,
a vorticity gauge based on the model is proposed.

2. Guide to the model

The solution developed here is ultimately based on the so-
lution for a rigid object immersed in a viscous fluid by Jeffery
(1922) and the extension to deformable inclusions of
Mulchrone and Walsh (2006), however, it differs quite signif-
icantly from Jeffery’s (1922) approach in the way velocities
and stresses are handled and equated at the boundary. A de-
tailed derivation is presented in the appendices. The rotational
convention adopted here is that the direction along the positive
x-axis is 0� and that anti-clockwise is the positive direction. At
any time instant the model consists of a non-rigid elliptical
object of viscosity mi immersed in a matrix of viscosity me

whose long axis makes an angle f with the positive x0-direc-
tion (see Fig. 1) and whose long and short axes are a and b,
respectively. The viscosity ratio is defined as mr ¼ me=mi and
the ellipse axial ratio R ¼ a=b. The ðx0; y0Þ coordinate system
is fixed whereas the ðx; yÞ coordinate system is always defined
with respect to the long and short axes of the elliptical object.
In the absence of the elliptical object, an homogeneous defor-
mation defined by a given velocity gradient tensor (L0) with
respect to ðx0; y0Þ prevails. In the presence of the elliptical
object, the homogeneous deformation is perturbed near the
elliptical object, but at large distances from the object this
perturbation disappears. Furthermore, we assume that inside
the elliptical object a general homogeneous deformation
occurs (i.e. no perturbation) which is usually different
from the unperturbed external deformation. This guarantees
that the elliptical object maintains an elliptical shape at all
times.

The derivation proceeds by assuming a form for the per-
turbed flow velocity field ðu; vÞ in terms of functions which
firstly solve Laplaces equation (i.e. for a function f, V2f¼ 0)
and secondly vanish far from the elliptical object. Slip on
the boundary is allowed by continuity/equality of normal ve-
locities and stresses at the ellipse boundary. In addition, shear
stresses at the boundary are set to zero and no restrictions are
imposed regarding continuity of internal and external bound-
ary parallel velocities. The external velocity field can be writ-
ten in terms of the internal velocity field, the unperturbed flow,
and the instantaneous shape of the ellipse (see Eqs. (14) and
(15)). Using the solution for the external velocity field and
the assumed internal velocity field both the internal and exter-
nal stresses can be calculated. Imposing stress boundary con-
ditions the remaining unknown parameters for the internal
velocity field can be calculated (see Eq. (24)). Therefore, the
internal and perturbed velocity fields are all known and the
problem is solved. As shown in the Appendix, the solution
is only valid for two special cases (i) a perfectly rigid object
and (ii) an area preserving void. From now on the paper con-
centrates on the case of a rigid object.

x’
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Fig. 1. Setting for the problem. An elliptical inclusion with viscosity mi is

enclosed in a medium with viscosity me and has long and short semi-axes

labelled a and b, respectively. There is a fixed coordinate system (x0, y0) and

a coordinate system which remains parallel to ellipse axes denoted by (x, y).
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3. Model behaviour

In this section, the dynamics of the derived solution is
examined in the context of typical structural geological flow-
types. In exploring the solution it makes sense to make com-
parisons with the no-slip solution of Mulchrone and Walsh
(2006). In the text below subscript s refers to the slipping
case whereas subscript ns refers to no-slip. In general, the
rotation rate for a slipping ellipse is:

df

dt

����
s

¼ 1

2

�
L021� L012

�

þ
ðRþ 1Þ

��
L021 þ L012

�
cos 2f� 2L011 sin 2f

�
2ðR� 1Þ ð1Þ

For the no-slip case (and a rigid inclusion) the rotation rate
is (Mulchrone and Walsh, 2006):

df

dt

����
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The relative rotation rate ðdfr=dtÞ is obtained by dividing
Eq. (1) by Eq. (2).

3.1. Bulk pure shear

For bulk pure shear (setting L012 ¼ L021 ¼ 0) the rotation
rates are characterised as follows:

df

dt
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df
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�
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from analysis ðdfr=dtÞ>1 always, meaning that slipping ellipses
always rotate faster than no-slip ellipses. By setting df=dtjs ¼ 0
in Eq. (3) it is found that the rotation rate is 0 at f¼ np=2, where
n is 0 or a positive integer. The dynamics of the situation is
illustrated in Fig. 2. For L011 > 0, there is a stable fixed point
(i.e. an orientation that ellipses tend to rotate towards) at f¼ 0
and an unstable fixed point at f ¼ p=2. This is identical to the
dynamics of rigid and non-rigid no-slip ellipses (and indeed
passive lines under the March model, March, 1932) in pure shear
flow. The main difference between the models is relatively faster
rates of rotation for slipping interfaces (see Fig. 3).

3.2. Bulk simple shear

The rotational dynamics of slipping objects under bulk sim-
ple shear is quite different from that predicted by previous the-
ories of no-slip objects i.e. Jeffery (1922). For bulk simple
shear, the rotation rates are characterised as follows:
df

dt

����
s
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2
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�
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R� 1
� 1
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df
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It is not possible to write a simplified rotation rate ratio in this
case.

Letting the rotation rates in Eq. (4) go to zero, we can find the
fixed or stable positions. For slip we find that these occur for:

f�s ¼�
1

2
cos�1

�
R� 1

Rþ 1

�
ð5Þ

which depends only on the axial ratio and in the case of no-slip:

f�ns ¼�
1

2
cos�1

�
R2þ 1

R2� 1

�
ð6Þ

However f�ns is complex for R> 1, so no fixed points exist
and the objects tend to rotate continuously. By contrast f�s is
real for R> 1 therefore under slip objects tend to rotate into
one of these fixed positions. The dynamics of this situation
is illustrated in Fig. 4a and shows the presence of two fixed
points, one stable and one unstable in the case of a slipping el-
lipse. The orientation of the fixed positions can be calculated

unstablestable

Fig. 2. Dynamics of pure shear rotation. Stable orientation coincides with the

stretching axis.
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Fig. 3. Relative rotation rate ðf0r ¼ dfr=dtÞ of inclusion with slip at the inter-

face versus an inclusion with no-slip as a function of axial ratio (R) under bulk

pure shear.
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from Eq. (5). It is also clear that (see Fig. 4b) the magnitude of
the rotation rates in the case of slip may be much larger than
those in the no slip case, however, near the stable points the
absolute rate of rotation in the slip case is lower. This indicates
that ellipses will tend to rotate into regions around the fixed
position relatively quickly and then slowly (as compared to
the no-slip case) attain the stable position. The relationship be-
tween the orientation of the stable fixed position and axial ra-
tio is given in Fig. 5. In the no slip case the object is predicted
to continuously rotate negatively (i.e. synthetically). Another
important feature of the slip model presented here is that anti-
thetic rotation into the stable direction is permitted. This is in
agreement with the results of analogue experiments on lubri-
cated rigid elliptical particles under simple shear (Ildefonse
and Mancktelow, 1993; Odonne, 1994; Kenkmann and
Dresen, 1998; Pennacchioni et al., 2000; Mancktelow et al.,
2002; Schmid and Podladchikov, 2003, 2004; Samanta and
Bhattacharyya, 2003; Ceriani et al., 2003; Bose and Marques,
2004; Marques and Bose, 2004; Marques et al., 2005a).

Fig. 6 illustrates the relative rotation rates of slip against no
slip rigid objects. Within the relative rotation rate range of

unstable stable
(a)

-90 -45 45 90

1

2

3

(b)

Fig. 4. Bulk kinematics is simple shear. (a) Stability diagram for a rigid object

(R¼ 3) with a slipping interface (curve with arrows on) as compared with

a rigid object with no slip at the interface which rotates synthetically contin-

uously. (b) Plot of absolute rotation rates (thick line represents inclusion with

no-slip, thin line inclusion with slip), illustrating shaded regions where the in-

clusion with slip rotates faster and unshaded regions where it rotates slower.
ð�1; 1Þ slipping interface objects rotate more slowly than their
no-slip counterparts. Moreover, at orientations greater than
�45� the converse is true. Notice also that negative relative
rotation rates occur close to the 0� direction indicating the
antithetic motion of slip ellipses compared with the always
synthetic rotation of no-slip ellipses.

4. Vorticity analysis

The solution derived in this paper has potentially many
applications and in this section a simple application to vorticity
analysis is presented. Vorticity is a measure of the degree of
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Fig. 5. Curve of stable direction versus axial ratio under bulk simple shear.

Filled black points are taken from the experimental results of Marques and

Bose (2004) for the stable orientation attained by a rigid ellipse with a slipping

interface under simple shear whereas the filled grey points correspond to the

numerical results of Marques et al. (2005a).
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Fig. 6. Contour plot of relative rotation of slip compared with no slip for rigid

objects as a function of axial ratio and orientation under simple shear. Num-

bers indicate relative rotation rates.
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non-coaxiality in a particular flow (Means et al., 1980; Ghosh,
1987) and the kinematic vorticity number (Wk) varies from
0 (pure shear) to 1 (simple shear) and beyond for rotationally
dominated flows. Ghosh and Ramberg (1976) and Marques and
Coelho (2003) investigated the stable directions for rigid objects
with no slip at the boundary (Jeffery’s, 1922 model). A commonly
used general deformation scenario used in geological analysis is
where simple shear and pure shear are combined as follows:

L0 ¼
�

L011 L012

0 �L011

�
ð7Þ

where positive L011 is transpressive and negative L011 is transten-
sional. From Eq. (1), the rotation rate is given by:
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ðRþ 1Þ
�
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�
2ðR� 1Þ ð8Þ

In this more general case, the position of the fixed points is de-
rived by setting the rotation rate to 0 and solving for f to give:

f�s ¼ Re
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ð9Þ

The relationship between f�s and the kinematic vorticity
number (Wk) is illustrated in Fig. 7. This clearly indicates that
the stable orientation obtained by a slipping elliptical object
and its axial ratio can be used to estimate the kinematic vorticity
number. It is important to note that the accuracy of an estimate
based on a single observation will not be high, however, more
exact methods based on populations can be developed.

5. Comparing deformation patterns around slip
and no-slip inclusions

It is beyond the scope of this paper to provide a detailed anal-
ysis of deformation patterns around slipping ellipses, however, it
is instructive to consider the special case of a rigid object in sim-
ple shear flow. Fig. 8 presents the results of two simulations with
identical starting positions (i.e. R¼ 2.5, mr¼ 0 and an initial

Wk

R=2 3

s*

Fig. 7. Relationship between stable direction and flow type (Wk).
orientation of f¼�10�), however, the left hand diagrams are
for slip whereas the right hand are for no-slip. The relevant equa-
tions for the motion of grid points inside and outside the inclu-
sion (derived here and in Mulchrone and Walsh, 2006) were
solved in Mathematica and by keeping track of connections
the deformed grid was generated.

The relative rapidity of the rotational phase of slip motion is
nicely exemplified where, at the relatively low finite strain of
Rs¼ 2.62, where Rs is the axial ratio of the finite strain ellipse,
the slip ellipse has almost antithetically rotated into the stable
orientation (approximately 20�). By contrast the no-slip ellipse
has synthetically rotated through �10� in the same interval.
There are some remarkable differences between deformation
patterns around the inclusions in the two cases. At relatively
moderate simple shear (Rs¼ 17.94, g¼ 6), the no slip inclusion
has a more smoothly varying pattern around it, with low defor-
mation zones adjacent to the long axis ends making a pattern
akin to an s-structure (Passchier and Simpson, 1986). In contrast
the no-slip inclusion displays a more varied deformation pattern
with high deformation zones emanating from the long axis ends
crossing the median line akin to a d-structure (Passchier and
Simpson, 1986) or more strictly because R> 1 a rolling struc-
ture (Van Den Driessche and Brun, 1987).

6. Discussion and conclusions

Some analogue experiments on the behaviour of rigid ellipti-
cal objects with lubricated boundaries have been reported rela-
tively recently in the literature (Ildefonse and Mancktelow,
1993; Marques and Cobbold, 1995; Marques and Coelho,
2001; Mancktelow et al., 2002; Ceriani et al., 2003; Marques
and Bose, 2004; Marques et al., 2005a). As shown in Table 1
all related analogue and theoretical results predict antithetic ro-
tation of inclusions, stable orientations and poor correlation with
the model Jeffery (1922). Ildefonse and Mancktelow (1993)
used rigid rectangular objects in both pure and simple shear
deformation experiments, although rectangular objects may ap-
proximate elliptical objects, it is clear that differences arise due
to morphology (e.g. Marques and Bose, 2004; Marques et al.,
2005a). They found increased relative rotation rates under
pure shear but the converse for simple shear. This is consistent
with the predictions of the present model i.e. increased rotation
rates for pure shear and both decreased and increased rotation
rates in simple shear (see Figs. 3 and 4). In their experiments
Marques and Cobbold (1995) found antithetic rotation into
a fixed/stable orientation, however, they focused more on the
development of folds adjacent to inclusions. Marques and
Coelho (2001) also looked at a slipping interface but addition-
ally included finite shear zone width (a factor not included in
the present model). However, they found antithetic rotation
and experimental results are similar to the simulations pre-
sented in Fig. 8. Mancktelow et al. (2002) motivated by the
absence of Jeffery’s transient fabrics in natural shear zones,
experimentally studied the influence of interface slip on parti-
cle motion. They found that a slipping particle tends to ini-
tially stabilise for shear strains below 10, but then tends to
continuously rotate. This may be due to the experimental set
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Fig. 8. Simulation of grid deformation during a slipping model and the traditional no-slip model.
up whereby the lubricant thins as deformation progresses, al-
though Marques and Bose (2004) eliminated this factor in
their experimental set up by using ice inclusions. Monoclinic
rhomboidal particles were found to attain a stable position.
Ceriani et al. (2003) found antithetic rotation into a metastable
position of 16� (my rotation convention). Absolute agreement
between experimental observations and the model derived
here is not expected because of the way in which the slipping
Table 1

Experimental results on inclusions with slip on the boundary

Study Experimental details Lubricant Antithetic rotation Stable orientation Deviation from

Jeffery (1922)

Marques and Coelho (2001) Confined, simple shear,

slip and no-slip

Liquid soap Yes 20� Yes

Mancktelow et al. (2002) Couette flow, slip and no-slip Liquid soap Yes 5e20� Yes

Ceriani et al. (2003) Couette flow, slip and no-slip Liquid soap Yes Not attained Yes

Marques and Bose (2004) Simple shear, slip Ice Yes See Fig. 5 Yes

Marques et al. (2005a) Simple shear, slip Low viscosity layer Yes See Fig. 5 Yes

Typical features (antithetic rotation, stable orientation and deviations from the no-slip model of Jeffery, 1922) are also exhibited by the analytical solution

derived here.
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interface is modelled. It is difficult to experimentally maintain
the theoretical boundary conditions imposed here. However,
there is broad agreement between the theory presented here
and experiment. Marques and Bose (2004) overcame the exper-
imental limitation of an ephemeral boundary by using ice in
experiments. They found both antithetic and synthetic rotation
and the presence of stable and meta-stable orientations in broad
agreement with the predictions of the present analytical model.
Furthermore the stable orientations compare favourably with
the predicted orientations derived here (Fig. 5) and vary in
a similar manner with axial ratio. Absolute agreement has
not been found possibly due to the migration of liquid water
into tail regions around the clast, a feature not present in the de-
rived model. The numerical model of Marques et al. (2005a),
where the interface slip is provided by a low viscosity layer
between the inclusion and matrix, provides similar results.
Again absolute agreement between the numerical model and
analytical model is not found (Fig. 5), however, the boundary
conditions applied are different.

Pennacchioni et al. (2001) postulate stablisation of porphyr-
oclasts in natural shear zones, however, the average orientations
are 6e10� with the shear direction which is considerably less
than that predicted for individual objects in the model devel-
oped here. Perhaps this is due to non-zero shear stresses across
boundaries in nature because of the enormous pressures under
which these structures evolve. There are additional differences
between the natural inclusions and behaviour predicted by the
model derived here. For example, Pennacchioni et al. (2001)
found that the stabilisation direction is independent of the as-
pect ratio whereas in the model there is a direct relationship
predicted (see Fig. 5). Furthermore, low aspect ratio particles
failed to attain a stable orientation, a feature which cannot be
explained by the slip model.

A model for the motion of rigid elliptical inclusions in
a generally deforming linear viscous fluid with slipping inter-
faces has been derived. Although there are certain features of
both natural and experimental studies which the model does
not explain, it appears to successfully replicate many features
first noted in analogue experiments such as antithetic rotation,
stable particle positions and rotation rates different to those
predicted by no-slip models.
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Appendix

The approach to finding the solution to the problem of both
rigid and non-rigid ellipses with slip at the interface in a vis-
cous fluid is similar to that taken by Mulchrone and Walsh
(2006). To conserve space the reader is referred first to the ap-
pendices of Mulchrone and Walsh (2006) and references to
equations from that paper are prefixed by MW. Eqs.
(MW16)e(MW48) apply equally in the present case and the
assumed form of the perturbed velocity field outside the el-
lipse (Eqs. (MW47)e(MW55)) is also identical. The assumed
form of the internal motion differs and is given by:

ui ¼ k1xþu1y ð10Þ

vi ¼�u2x� k2y ð11Þ

meaning that the object can rotate and deform homoge-
neously as well as gain or loose volume if k1� k2 s 0.
At the surface of the ellipse (i.e. l¼ 0) the internal and ex-
ternal velocities must agree, however, as slip is allowed it is
only the boundary normal components of velocity that must
agree. The unit normal vector (n) to the boundary of the el-
lipse is calculated using the gradient (Marsden and Tromba,
2003, p. 170):

n¼ P

0
B@

x

a2

y

b2

1
CA ð12Þ

so that taking both the internal and external velocity compo-
nents projected along n the velocity boundary condition is
(see Marsden and Tromba, 2003, p. 31):

n$vi

knk2n¼ n$ve

knk2n ð13Þ

where vi ¼ ðui; viÞ is the internal velocity vector and ve ¼
ðu; vÞ is the external velocity vector. Eq. (13) is satisfied by
equating like coefficients to give the following set of
equations:

2Aða0þ b0Þ þ k1� L11� g0W ¼ 0"
b2ð2b0H� 2a0H0 � L12 � g0Tþu1Þ

�a2ð2b0H� 2a0H0 þ L21þ g0Tþu2Þ

#
¼ 0

L22 � g0W � 2Bða0þ b0Þ þ k2 ¼ 0

2Ha2þ 2H0b2þ T ¼ 0

2Bb2� 2Aa2þW ¼ 0

ð14Þ

which solve to give:
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A¼ ða0þ b0Þ ðL11� k1Þ � b2g0ðk2� k1þ L11 þ L22Þ
2ða0þ b0Þ

�
a0þ b0�

�
a2þ b2

�
g0

�

B¼ ða0þ b0Þ ðL22þ k2Þ � a2g0ðk2� k1þ L11 þ L22Þ
2ða0þ b0Þ

�
a0þ b0�

�
a2þ b2

�
g0

�

W ¼ a2ðL11� k1Þ � b2ðL22 þ k2Þ
a0 þ b0�

�
a2þ b2

�
g0

H ¼

2
4 a2

�
L21þu2 � 2

�
a0 þ b2g0

�
H0
�

þb2
�
L12�u1 þ 2

�
a0� b2g0

�
H0
�
3
5

2
�
a4g0þ b2b0þ a2

�
b2g0� b0

��

T ¼

2
4 2

�
a2� b2

��
a2g0þ b2b0

�
H0

�a2
�
a2ðL21þu2Þ þ b2ðL12�u1Þ

�
3
5

a4g0 þ b2b0þ a2
�
b2g0 � b0

�

ð15Þ

notice that an expression has not been obtained for H0.
Next expressions for the internal and external stresses are

obtained. The procedure is quite similar to that outlined in
Mulchrone and Walsh (2006, Eqs. (MW62)e(MW65)) except
for additional algebraic complexity due to H0. Using the values
in Eq. (15) expressions for the components of stress relative to
the fixed coordinate system (both internal and external) are
obtained:

sðiÞx ¼P

 �
2mik1�p

ðiÞ
0

�
x

a2
þmiðu1�u2Þy

b2

!

sðiÞy ¼P

 
miðu1�u2Þx

a2
�
�
2mik2þp

ðiÞ
0

�
y

b2

!

sðeÞx ¼P

0
BBBBB@

�
2ameðL11� k1Þþb

�
2L11me�p

ðeÞ
0

��
x

a2b

þ
me

 
a
�
16H0 �b2ð5L12þL21�4u1Þ

�
þ2b3ðu1�L12Þ

þa3ðL12�3L21�4u2Þ�2a2bðL12þ2L21þu2Þ

!
y

ab2
�
a2�2ab�b2

�

1
CCCCCA

sðeÞy ¼P

0
BBBB@

me

 
bða2ðL12þL21Þ�16H0Þþ2a3ðL21þu2Þ

�b3ðL12þL21Þ�2ab2ðL21þu1Þ

!
x

ab2
�
a2�2ab�b2

�

�
�
2bmeðL11� k2Þþa

�
2L11meþp

ðeÞ
0

��
y

ab2

1
CCCCA

ð16Þ

where the superscripts i and e refer to internal and external
stress, respectively, and the subscripts x and y refer to the
stress components parallel to the x and y-axes, respectively.
Let the internal and external stress vectors be denoted by:
sðiÞ ¼
 

sðiÞx

sðiÞy

!
and sðeÞ ¼

 
sðeÞx

sðeÞy

!

These stresses are then resolved along the boundary. The
boundary normal is given by Eq. (12), whereas a unit vector
parallel to the boundary is given by:

s¼ P

 � y

b2

x

a2

!
ð17Þ

Therefore, the boundary normal components are:

s
ðiÞ
N ¼

n$sðiÞ����n����2 n ð18Þ

s
ðeÞ
N ¼

n$sðeÞ����n����2 n ð19Þ

and the boundary shear components are:

s
ðiÞ
S ¼

s$sðiÞ����s����2 s ð20Þ

s
ðeÞ
S ¼

s$sðeÞ����s����2 s ð21Þ

Each stress component consists of terms in x2, y2 and xy.
At the boundary both the normal and shear, internal and ex-

ternal stresses must be equal giving s
ðiÞ
N ¼ s

ðeÞ
N and s

ðiÞ
S ¼ s

ðeÞ
S ,

each condition results in three equations (i.e. by equating like
coefficients). The shear stress at the boundary is set to 0 for
slip, thus a total of nine equations are to be solved. The nine
equations are:

2aðk� L11Þmeþ b
�

2kmiþ p
ðeÞ
0 � p

ðiÞ
0 � 2L11me

	
ab

¼ 0

2bðk� L11Þmeþ a
�

2kmi� p
ðeÞ
0 þ p

ðiÞ
0 � 2L11me

	
ab

¼ 0

abmiðu2 �u1Þ þ me

�
ðbL12þ aL21Þðaþ bÞ � b2u1þ a2u2

�
ab

¼ 0



959K.F. Mulchrone / Journal of Structural Geology 29 (2007) 950e960
miðu1�u2Þ
a

¼ 0

miðu1�u2Þ
b

¼ 0

kmi

ab
¼ 0"
me

 
L12b

�
a2� b2

�
þ L21

�
2a3þ a2b� 2ab2� b3

�
�2
�
8bH0 þ ab2u1� a3u2

�
!#

a4b
�
a2� 2ab� b2

�
¼ miðu1�u2Þ

a4"
me

 
ð � L12 þ 3L21þ 4u2Þa3þ 2bðL12þ 2L21þu2Þa2þ�

b2ð5L12þ L21 � 4u1Þ � 16H0
�
aþ 2b3ðL12�u1Þ

!#

ab4
�
a2� 2ba� b2

�
¼ miðu2�u1Þ

b4��
a2þ b2

�
k� ðaþ bÞ2L11

�
meþ 2abkmi

ab
¼ 0

No solution exists which satisfies all nine equations, how-
ever, omitting the equation which sets the xy-coefficient of
s
ðiÞ
S to 0 i.e. kmi=ab ¼ 0, the following solution is obtained

and letting mr ¼ me=mi:

H0 ¼ � 1

16
ðaþ bÞ2ðL12þ L21Þ

k1 ¼ k2 ¼
ðaþ bÞ2L11mr

2abþ
�
a2 þ b2

�
mr

¼ k

u1 ¼ u2 ¼
aL21þ bL12

b� a
¼ u

p
ðeÞ
0 ¼�

2
�
a2� b2

�
L11mimrðmr � 1Þ

2abþ
�
a2þ b2

�
mr

þ p
ðiÞ
0

ð22Þ

By substituting this solution into the omitted equation, the val-
idity of the solution can be assessed:

ðaþ bÞL11mrmi

ab
�
2abþ

�
a2þ b2

�
mr

�¼ 0 ð23Þ

Clearly, the solution is only valid (i.e. this equation is sat-
isfied) for (i) mr¼ 0, a fully rigid object or (ii) mi¼ 0, an
area preserving void. The case of a rigid inclusion is concen-
trated on here so that the final solution is:

H0 ¼ � 1

16
ðaþ bÞ2ðL12þ L21Þ

k1 ¼ k2 ¼ k ¼ 0

u1 ¼ u2 ¼
aL21þ bL12

b� a
¼ u

p
ðeÞ
0 ¼ p

ðiÞ
0

ð24Þ

This completes the solution.
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